Introduction

This report checks if the status of packages on CRAN are due to intermittent failures.

Failures defined as warnings, notes or errors without change on:

  • R version used (if not stable the same svn snapshot)

  • The package version (Note that CRAN might modify a package without changing the version)

  • Their dependencies

Reasons of these failures might be because the packages depend on:

  • Random generation numbers

  • Flacky external resources

  • Other ?

Why is this important?

Because package maintainers of dependencies of that package, R core and CRAN team need to check if the failures are false positives.

This report started because it was suggested as something that the R-repositories working group could help the CRAN team.

Retrieve data

It makes use of tools::CRAN_check_results to retrieve the data.

library("dplyr")
library("tools", include.only = c("package_dependencies", "CRAN_check_results"))
library("flextable", include.only = c("flextable", "autofit"))
# Use a LOCAL environment to check if files can be overwritten on my computer
local_build <- as.logical(Sys.getenv("LOCAL", "FALSE"))
yc <- readRDS("today.RDS")
tc <- CRAN_check_results()
# Added 2023/03/09: sometimes some flavors are reported without status: Omit those
tc <- tc[!is.na(tc$Status),]
if (!interactive() && !local_build) {
  message("Saving today's file.")
  saveRDS(tc, file = "today.RDS")
} 

The checks are from multiple flavors release, devel, old release and patched on multiple machines and configurations.

old_flavors <- readRDS("flavors.RDS")
flavors <- unique(tc$Flavor)
# One flavor now present in all is the r-devel-windows-x86_64: skip
flavors <- setdiff(flavors, "r-devel-windows-x86_64")
proto <- data.frame(r_version = character(),
                    os = character(),
                    architecture = character(),
                    other = character())
flavors_df <- strcapture(
  pattern = "r-([[:alnum:]]+)-([[:alnum:]]+)-([[:alnum:]_\\+]+)-?(.*)", 
  x = flavors,
  proto = proto)

# Extract R version used and svn id
h <- "https://www.r-project.org/nosvn/R.check/%s/ggplot2-00check.html"
links <- sprintf(h, flavors)
extract_revision <- function(x) {
  r <- readLines(x, 12)[12]
  version <- strcapture(pattern = "([[:digit:]]\\.[[:digit:]]\\.[[:digit:]])",  
                        x = r, proto = data.frame(version = character()))
  revision <- strcapture(pattern = "(r[[:digit:]]+)",  x = r,
                         proto = data.frame(revision = character()))
  cbind(version, revision)
}
revision <- data.frame(version = character(),
                       revision = character())
for (i in links) {
  revision <- rbind(revision, extract_revision(i))
}

flavors_df <- cbind(flavors = flavors, flavors_df, revision)
if (!interactive() && !local_build) {
  saveRDS(flavors_df, "flavors.RDS")
}

m <- match(tc$Flavor, flavors_df$flavors)
tc_flavors <- cbind(tc, flavors_df[m, ])
flextable(flavors_df) |> 
  autofit()

flavors

r_version

os

architecture

other

version

revision

r-devel-linux-x86_64-debian-clang

devel

linux

x86_64

debian-clang

r87386

r-devel-linux-x86_64-debian-gcc

devel

linux

x86_64

debian-gcc

r87392

r-devel-linux-x86_64-fedora-clang

devel

linux

x86_64

fedora-clang

r87365

r-devel-linux-x86_64-fedora-gcc

devel

linux

x86_64

fedora-gcc

r87362

r-patched-linux-x86_64

patched

linux

x86_64

4.4.2

r87381

r-release-linux-x86_64

release

linux

x86_64

4.4.2

r-release-macos-arm64

release

macos

arm64

4.4.0

r86238

r-release-macos-x86_64

release

macos

x86_64

4.4.0

r-release-windows-x86_64

release

windows

x86_64

4.4.2

r-oldrel-macos-arm64

oldrel

macos

arm64

4.3.1

r-oldrel-macos-x86_64

oldrel

macos

x86_64

4.3.2

r-oldrel-windows-x86_64

oldrel

windows

x86_64

4.3.3

It assumes that the same configuration in one package is used for all. Or in other words that the reports of the configuration (svn revision and version) for the A3 package is the same as for all the other packages.

Warning: This assumption is not always true, but this would require to check each log file on each flavor to verify the R and svn id of each package (which could take too much time and resources).

Overview

Briefly an introduction of how much effort goes into checking

library("ggplot2")
theme_set(theme_minimal())
tc |> 
  filter(!is.na(T_install)) |> 
  ggplot() +
  geom_violin(aes(T_install, Flavor)) +
  scale_x_log10() +
  labs(x = "seconds", title = "Time to install", y = element_blank())
Machines (y axis) vs install time (seconds, x axis), violing plot usually around 10 seconds.

Distribution of install time on each machine.

This means that just to install all the packages on the multiple flavors with a single CPU would take 35 days.

tc |> 
  filter(!is.na(T_check)) |> 
  ggplot() +
  geom_violin(aes(T_check, Flavor), trim = FALSE) +
  scale_x_log10() +
  labs(x = "seconds", title = "Time to check", y = element_blank())
Machines (y axis) vs check time (seconds, x axis), violing plot usually around 100 seconds.

Distribution of checking time on each machine.

This means that to check all the packages on the multiple flavors with a single CPU would take 158 days.

tc |> 
  filter(!is.na(T_total)) |> 
  ggplot() +
  geom_violin(aes(T_total, Flavor)) +
  scale_x_log10() +
  labs(x = "seconds", title = "Time to check and install", y = element_blank())
Machines (y axis) vs total time (seconds, x axis), violing plot usually around 100 seconds.

Distribution of total time on each machine.

This means that to install and check all the packages with a single CPU would take 356 days.

I don’t know the computational cost of 266 days of CPU (every day), but a rough calculation of 2.5 cents per hour means 213.49 dollars daily dedicated to this.

tc |> 
  group_by(Package) |> 
  summarize(Versions = n_distinct(Version)) |> 
  ungroup() |> 
  count(Versions, name = "Packages", sort = TRUE) |> 
  flextable() |> 
  autofit()

Versions

Packages

1

21,142

2

578

3

18

This was surprising, but sometimes checks have multiple versions. Probably when a new version is added and the system don’t catch it for a certain machine.

tc |> 
  group_by(Package) |> 
  summarize(Flavors = n_distinct(Flavor)) |> 
  ungroup() |> 
  count(Flavors, name = "Packages", sort = TRUE) |> 
  flextable() |> 
  autofit()

Flavors

Packages

13

21,496

12

138

10

37

11

26

9

17

4

12

6

5

7

3

8

3

3

1

Similarly, often packages are only tested on few configurations.

Combining both we can have packages with few configurations that have multiple versions being tested.

tc |> 
  group_by(Package) |> 
  summarize(Versions = as.character(n_distinct(Version)),
            Flavors = n_distinct(Flavor)) |> 
  ungroup() |> 
  count(Flavors, Versions, name = "Packages") |> 
  ggplot() +
  geom_tile(aes(Flavors, Versions, fill = log10(Packages))) +
  scale_x_continuous(expand = expansion())
Flavors of machines and versions of packages

Most packages are just tested one version.

But focusing on those that have just one version of the package being tested, most of the machines have packages either OK or with some notes.

man_colors <- c("OK" = "green", "NOTE" = "darkgreen", 
                "WARNING" = "yellow", "ERROR" = "red", "FAILURE" = "black")
tc |> 
  group_by(Package) |> 
  filter(n_distinct(Version) == 1) |> 
  ungroup() |> 
  group_by(Flavor) |> 
  count(Status, name = "packages") |> 
  mutate(perc = packages/sum(packages),
         Status = forcats::fct_relevel(Status, names(man_colors))) |> 
  ggplot() + 
  geom_col(aes(perc, Flavor, fill = Status)) +
  scale_x_continuous(expand = expansion(), labels = scales::percent_format()) +
  scale_fill_manual(values = man_colors) +
  labs(title = "Packages check status", x = element_blank())
On the vertical axis the machine, on the horitzonal axis the packages colored by the status.

Most frequent status is OK or NOTE on all machines.

If we look at the most frequent status report for packages we can see this table:

ts <- tc |> 
  group_by(Package) |> 
  filter(n_distinct(Version) == 1) |> 
  count(Status, name = "flavors") |> 
  ungroup() |> 
  tidyr::pivot_wider(values_from = flavors, names_from = Status, 
                     values_fill = 0) |> 
  count(OK, NOTE, WARNING, ERROR, FAILURE, name = "packages", sort = TRUE)
download.file("https://cran.r-project.org/web/packages/packages.rds", 
              destfile = "packages.RDS") # From the help page
ap <- readRDS("packages.RDS") |> 
  as.data.frame() |> 
  distinct(Package, .keep_all = TRUE)
ap_bioc <- available.packages(repos = BiocManager::repositories()[1:5])
ap_bioc <- cbind(ap_bioc, Additional_repositories = NA)
ap_colm <- intersect(colnames(ap), colnames(ap_bioc))
ap <- rbind(ap[, ap_colm], ap_bioc[, ap_colm])
head(ts) |> 
  flextable() |> 
  autofit()

OK

NOTE

WARNING

ERROR

FAILURE

packages

13

0

0

0

0

12,789

5

8

0

0

0

1,597

3

10

0

0

0

1,423

10

3

0

0

0

1,155

0

13

0

0

0

989

11

2

0

0

0

757

We can see that the most common occurrences are some sort of OK and notes on checks. We can also check the official results on CRAN.

We can see that 0.53%, 0.38%, 0.28%, 0.27%, 0.04% of packages pass all checks without notes.

Now let’s see which of the notes or failures are due to intermittent issues.

Compare

First we need to make sure that we compare the right configurations. They must be the same machine, the same R version and the same svn revision between yesterday and today.

# Compare the previous flavor with today's
m_flavor <- which(flavors_df$flavors %in% old_flavors$flavors)
m_version <- which(flavors_df$version %in% old_flavors$version)
m_revision <- which(flavors_df$revision %in% old_flavors$revision)
tm <- table(c(m_flavor, m_version, m_revision))
compare <- flavors_df$flavors[tm == 3] # Only missing the packages version

All changes

Next, compare the status of the packages if the version of the package is the same.

# Find package on the flavors to compare that haven't changed versions
library("dplyr")
tcc <- filter(tc, Flavor %in% compare) |> 
  select(Flavor, Package, Version, Status) |> 
  arrange(Flavor, Package)
ycc <- filter(yc, Flavor %in% compare) |> 
  select(Flavor, Package, Version, Status) |> 
  arrange(Flavor, Package)

all_checks <- merge(tcc, ycc, by = c("Flavor", "Package"), 
                    suffixes = c(".t", ".y"), all = TRUE) 

possible_packages <- all_checks |> 
  filter(Version.t == Version.y & # Same version
           Status.t != Status.y & # Different status
           !is.na(Status.y) & # No new version or removed package
           !is.na(Status.t)) |> 
  rename(Today = Status.t, Yesterday = Status.y)
possible_packages |> 
  select(Package, Flavor, Today, Yesterday, -Version.t, -Version.y) |> 
  arrange(Package, Flavor) |> 
  flextable() |> 
  autofit()

Package

Flavor

Today

Yesterday

DRviaSPCN

r-release-windows-x86_64

ERROR

OK

ElevDistr

r-devel-linux-x86_64-debian-clang

OK

ERROR

EpiModel

r-release-windows-x86_64

FAILURE

NOTE

FAOSTAT

r-release-windows-x86_64

FAILURE

OK

FME

r-release-windows-x86_64

FAILURE

OK

GISSB

r-devel-linux-x86_64-debian-clang

ERROR

OK

GSEMA

r-release-windows-x86_64

ERROR

OK

HDMT

r-release-windows-x86_64

OK

ERROR

HIMA

r-release-windows-x86_64

OK

ERROR

MOQA

r-release-windows-x86_64

FAILURE

OK

NetLogoR

r-devel-linux-x86_64-debian-clang

NOTE

ERROR

ParamHelpers

r-devel-linux-x86_64-debian-clang

ERROR

NOTE

ParamHelpers

r-release-windows-x86_64

ERROR

NOTE

RegrCoeffsExplorer

r-devel-linux-x86_64-debian-clang

ERROR

OK

RobLoxBioC

r-release-windows-x86_64

ERROR

OK

SIGN

r-release-windows-x86_64

ERROR

NOTE

TDCor

r-release-windows-x86_64

FAILURE

OK

aIc

r-release-windows-x86_64

OK

ERROR

assignR

r-devel-linux-x86_64-debian-clang

ERROR

OK

bayeslist

r-devel-linux-x86_64-fedora-gcc

OK

ERROR

biogas

r-devel-linux-x86_64-debian-clang

ERROR

OK

bmscstan

r-release-windows-x86_64

NOTE

FAILURE

coil

r-release-windows-x86_64

ERROR

OK

cryptoQuotes

r-release-windows-x86_64

NOTE

ERROR

cutpointr

r-devel-linux-x86_64-fedora-clang

ERROR

NOTE

cutpointr

r-devel-linux-x86_64-fedora-gcc

ERROR

NOTE

etwfe

r-devel-linux-x86_64-debian-clang

ERROR

OK

etwfe

r-release-windows-x86_64

ERROR

OK

eudract

r-devel-linux-x86_64-debian-clang

ERROR

OK

fdrDiscreteNull

r-release-windows-x86_64

ERROR

OK

fitzRoy

r-devel-linux-x86_64-debian-clang

ERROR

OK

fitzRoy

r-release-windows-x86_64

ERROR

OK

gadget2

r-release-windows-x86_64

FAILURE

OK

graphicalExtremes

r-devel-linux-x86_64-debian-clang

NOTE

OK

klassR

r-devel-linux-x86_64-debian-clang

ERROR

OK

klassR

r-release-windows-x86_64

ERROR

OK

leiden

r-release-windows-x86_64

FAILURE

NOTE

lsnstat

r-devel-linux-x86_64-debian-clang

OK

ERROR

lsnstat

r-release-windows-x86_64

OK

ERROR

missForest

r-devel-linux-x86_64-debian-clang

NOTE

ERROR

mlr3benchmark

r-release-windows-x86_64

ERROR

OK

mlr3spatiotempcv

r-release-windows-x86_64

ERROR

OK

mnis

r-release-windows-x86_64

ERROR

OK

nJira

r-release-windows-x86_64

ERROR

NOTE

optimall

r-release-windows-x86_64

ERROR

OK

pathfindR

r-release-windows-x86_64

OK

ERROR

pensynth

r-devel-linux-x86_64-debian-clang

ERROR

OK

poissoned

r-release-windows-x86_64

FAILURE

OK

randquotes

r-release-windows-x86_64

FAILURE

NOTE

ravelRy

r-release-windows-x86_64

FAILURE

NOTE

rdracor

r-devel-linux-x86_64-debian-clang

ERROR

OK

rdracor

r-release-windows-x86_64

ERROR

OK

redatamx

r-release-windows-x86_64

ERROR

NOTE

rless

r-release-windows-x86_64

NOTE

FAILURE

rties

r-devel-linux-x86_64-debian-clang

ERROR

OK

rties

r-devel-linux-x86_64-fedora-clang

NOTE

ERROR

rties

r-devel-linux-x86_64-fedora-gcc

NOTE

ERROR

rties

r-release-windows-x86_64

ERROR

OK

simdata

r-devel-linux-x86_64-debian-clang

ERROR

OK

sjPlot

r-devel-linux-x86_64-debian-clang

ERROR

OK

sjPlot

r-release-windows-x86_64

ERROR

OK

smdi

r-devel-linux-x86_64-fedora-gcc

OK

NOTE

tidyMC

r-release-windows-x86_64

OK

FAILURE

tpfp

r-release-windows-x86_64

FAILURE

OK

wnominate

r-release-windows-x86_64

FAILURE

OK

xLLiM

r-release-windows-x86_64

OK

ERROR

If the machine and R versions is the same but the check of the package is different there might be some discrepancy between the dependencies.

# Extract dependencies
dependencies <- package_dependencies(unique(possible_packages$Package),
                                     # Should it check all the recursive dependencies or only direct?
                                     db = ap, # Only considering those dependencies on CRAN and Bioconductor but not any Additional_repositories. 
                                     recursive = TRUE, 
                                     which = c("Depends", "Imports", "LinkingTo", "Suggests"))

# Prepare to compare versions (as they are sorted by everything else we can compare directly)
intermittent_failures <- rep(FALSE, length(dependencies))
names(intermittent_failures) <- names(dependencies)
dep_0 <- lengths(dependencies) == 0
intermittent_failures[dep_0] <- TRUE

If they do not have any recursive dependency on Depends, Imports, LinkingTo and Suggests they might be have some intermittent problems on the packages. These is only on dependencies on CRAN and Bioconductor but not in other additional repositories (There are 161 packages with additional repositories).

If they have some dependencies and those dependencies didn’t change as far as we can tell then there might be some problems with random numbers or connectivity.

for (pkg in names(intermittent_failures[!intermittent_failures])) {
  dep <- dependencies[[pkg]]
  fl <- possible_packages$Flavor[possible_packages$Package == pkg]
  intermittent_failures[pkg] <- all_checks |> 
    filter(Package %in% dep,
           Flavor %in% fl,
           Version.t == Version.y,
           Status.t != Status.y) |> 
    nrow() == 0 # If packages outside || any(!dep %in% rownames(ap)) 
}
packages <- names(intermittent_failures)[intermittent_failures]

We finally show the differences on the status of those without any dependency change on version or status1:

keep_files <- filter(possible_packages, Package %in% packages) |> 
  merge(y = flavors_df, by.x = "Flavor", by.y = "flavors", all.x = TRUE, all.y = FALSE) |> 
  select(Package, Flavor, Version = Version.t, R_version = r_version, OS = os, 
         architecture, other, version, revision) |> 
  mutate(Date = Sys.time())

if (nrow(keep_files >= 1)) {
  write.csv(keep_files, 
            paste0("cran-failing-", format(Sys.time(), "%Y%m%dT%H%M"), ".csv"),
            row.names = FALSE,
            quote = FALSE,
  )
}
filter(possible_packages, Package %in% packages) |> 
  select(Package, Flavor, Today, Yesterday, -Version.t, -Version.y) |> 
  flextable() |> 
  autofit()

Package

Flavor

Today

Yesterday

cutpointr

r-devel-linux-x86_64-fedora-clang

ERROR

NOTE

bayeslist

r-devel-linux-x86_64-fedora-gcc

OK

ERROR

cutpointr

r-devel-linux-x86_64-fedora-gcc

ERROR

NOTE

smdi

r-devel-linux-x86_64-fedora-gcc

OK

NOTE

Conclusion

cat("There are no packages detected with differences between yesterday and today attributable to intermittent failures.\n")
knitr::knit_exit()
cat("This suggests that these packages might have some problems with random numbers or connectivity:\n\n") 

This suggests that these packages might have some problems with random numbers or connectivity:

if (any(dep_0)) {
  cat("\n## Packages with dependencies\n\n")
  cat(paste0(" - ", sort(intersect(packages, 
                                   names(dependencies)[dep_0])), "\n"), sep = "")
  cat("\n## Packages without dependencies\n\n")
  cat(paste0(" - ", sort(intersect(packages,
                                   names(dependencies)[!dep_0])), "\n"), sep = "")
  
} else {
  cat(paste0(" - ", sort(packages), "\n"), sep = "")
}
  • bayeslist
  • cutpointr
  • smdi

  1. I think a new version might not propagate to check other packages until 24 hours later as checks might have already started for that day.↩︎