Skip to contents

Function to perform bootstrap on the samples. boot_samples_sgcca bootstrap given original data, while boot_index_sgcca() given some index of samples it iterates over it.

Usage

boot_samples_sgcca(..., nb_boot = 1000, verbose = TRUE)

boot_index_sgcca(index, ..., BPPARAM = BiocParallel::SerialParam())

Arguments

...

Named arguments passed to sgcca.

nb_boot

Number of bootstraps to perform.

verbose

Logical, should it print a progress bar (default) or not?

index

A list of numeric values for selecting values

BPPARAM

Set up parallel backend (see BiocParallel documentation).

Value

A list with two elements: the coefficient of each variable of the input blocks; and the AVE values, both inner, and outer

Details

boot_index_sgcca Iterate over the index, which is a list of vectors with the position of samples to use and use sgcca with the arguments provided. boot_samples_sgcca Iterate over random samples without recording which samples where used.

Note

Recommended to provide scaled data and the argument scale = FALSE

See also

Examples

data("Russett", package = "RGCCA")
X_agric <- as.matrix(Russett[, c("gini", "farm", "rent")])
X_ind <- as.matrix(Russett[, c("gnpr", "labo")])
X_polit <- as.matrix(Russett[ , c("inst", "ecks",  "death", "demostab",
                                  "dictator")])
A <- list(X_agric, X_ind, X_polit)
C <- matrix(c(0, 0, 1, 0, 0, 1, 1, 1, 0), 3, 3)
out <- boot_samples_sgcca(A = A, C = C, c1 = rep(1, 3),  nb_boot = 10)
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |=======                                                               |  10%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |=====================                                                 |  30%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |=================================================                     |  70%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |===============================================================       |  90%
  |                                                                            
  |======================================================================| 100%
head(out$AVE)
#>          inner     outer
#> [1,] 0.3198515 0.6425860
#> [2,] 0.4556024 0.7002251
#> [3,] 0.4771476 0.6962664
#> [4,] 0.4936660 0.6633783
#> [5,] 0.3921013 0.6420366
#> [6,] 0.4398723 0.6559442
boots <- 10
index <- boot_index(nrow(A[[1]]), boots)
boot_i <- boot_index_sgcca(index, A = A, C = C)