Look for every variation of the models changing the weights by 0.1.
Usage
iterate_model(..., BPPARAM = BiocParallel::SerialParam())
search_model(..., nWeights = 3, BPPARAM = BiocParallel::SerialParam())
Arguments
- ...
All the same arguments that would be passed to sggca, pass named arguments.
- BPPARAM
Set up parallel backend (see BiocParallel documentation).
- nWeights
The number of weights used to check the possible designs.
Examples
data("Russett", package = "RGCCA")
X_agric <- as.matrix(Russett[, c("gini", "farm", "rent")])
X_ind <- as.matrix(Russett[, c("gnpr", "labo")])
X_polit <- as.matrix(Russett[ , c("inst", "ecks", "death", "demostab",
"dictator")])
A <- list(Agric = X_agric, Ind = X_ind, Polit = X_polit)
C <- matrix(c(0, 0, 1, 0, 0, 1, 1, 1, 0), 3, 3)
out <- search_model(A = A, C = C, c1 =rep(1, 3), scheme = "factorial",
scale = FALSE, verbose = FALSE,
ncomp = rep(1, length(A)),
bias = TRUE, BPPARAM = BiocParallel::SerialParam())
head(out)
#> vs12 vs13 vs23 AVE_inner AVE_outer cc1 var12 var13
#> 1 0.3243244 -0.4429347 -0.7464389 0.1506887 0.6668992 0.07534437 0.5 0.5
#> 2 0.3310923 -0.4468592 -0.7481229 0.1396425 0.6649707 0.15954291 1.0 0.5
#> 3 0.3194449 -0.4400412 -0.7451902 0.1631059 0.6681027 0.21914752 0.5 1.0
#> 4 0.3243244 -0.4429347 -0.7464389 0.1506887 0.6668992 0.30137749 1.0 1.0
#> 5 0.3575118 -0.4485234 -0.7713634 0.3614081 0.6533113 0.18070403 0.5 0.0
#> 6 0.3573044 -0.4483754 -0.7712343 0.2833784 0.6534723 0.27636702 1.0 0.0
#> var23 weights
#> 1 0.0 2
#> 2 0.0 2
#> 3 0.0 2
#> 4 0.0 2
#> 5 0.5 2
#> 6 0.5 2
# From all the models, we select that with the higher inner AVE:
model <- extract_model(C, out, "inner")
# We then look for a variation of the weights of this model
out <- iterate_model(A = A, C = model, c1 =rep(1, 3), scheme = "factorial",
scale = FALSE, verbose = FALSE,
ncomp = rep(1, length(A)),
bias = TRUE)